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OutlineOutlineOutline
n Multigrid algorithms for implicit dynamics
n Element level parallelism
n Nested mesh generation and partitioning
n Algorithm performance
n Application to ASCI coupled solid rocket

simulations
n Extensions to adaptive mesh refinement
n Future developments
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Nonlinear Implicit DynamicsNonlinear Implicit DynamicsNonlinear Implicit Dynamics
Loop over time:

Loop over Newton iterations:

End loop over Newton iterations

Solve

Increment displacements

Compute velocities and accelerations
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Parallel Multigrid MethodsParallel Parallel MultigridMultigrid Methods Methods
n Use multigrid to solve linear matrix

equations in nonlinear algorithms
n Basic two grid method

l iterative methods quickly produce a smooth error
on a fine mesh

l compute the smooth error on a coarse mesh

n Recursion produces multigrid method
n Computational effort is linearly

proportional to problem size
(algorithmically scalable)

n Element level parallelism gives scalable
performance
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Multigrid ComponentsMultigrid Multigrid ComponentsComponents
n Relaxation

l Jacobi, Gauss-Seidel perform poorly for
ill-conditioned problems

l preconditioned conjugate gradient

n Interpolation, restriction
l nodal averaging for nested meshes

n Coarse mesh solution
l compute coarse mesh matrix from

coarse mesh elements
l preconditioned conjugate gradient
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PCG RelaxationPCG RelaxationPCG Relaxation
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Intergrid Transfer OperatorsIntergridIntergrid Transfer Operators Transfer Operators
Fine mesh Coarse mesh
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Element Level ComputationsElement Level ComputationsElement Level Computations
n All operations can be performed

independently on partitioned domains
n Interprocessor communications required

during
l matrix-vector multiplications
l scalar products
l fine to coarse mesh restriction

n Matrix-free computations reduce storage
and CPU time
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Distributed Memory ImplementationDistributed Memory ImplementationDistributed Memory Implementation

nonblocking MPI
communications
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Mesh GenerationMesh GenerationMesh Generation
n Multigrid requires a hierarchy of

increasingly finer meshes
n Adaptive mesh refinement will eventually

be used to generate this hierarchy
n Truegrid is employed to produce a

sequence of nested, uniformly refined
hexahedral meshes

n Complex parts can be modeled in this
manner
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Solid Rocket MotorSolid Rocket MotorSolid Rocket Motor

4,096 262,14432,768
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Rocket Joint DetailRocket Joint DetailRocket Joint Detail
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Mesh PartitioningMesh PartitioningMesh Partitioning
n Partitioning is performed on the coarsest

mesh using Metis to achieve perfect load
balance

n Uniform refinement of the coarsest mesh
partitions produces partitions on all of
the fine meshes

n Perfect element load balance is
maintained throughout the mesh
hierarchy

n Communications may not be optimum
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Coarsest Mesh PartitionsCoarsest Mesh PartitionsCoarsest Mesh Partitions
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Partition Mesh RefinementPartition Mesh RefinementPartition Mesh Refinement

uniform
refinement
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Parallel PerformanceParallel PerformanceParallel Performance
n Code has been benchmarked on several

multiprocessor machines
l IBM SP2 (Argonne)
l SGI Origin 2000 (NCSA)
l SGI Cray T3E (PSC)

n Computation dominates communication
n Scalable element computations
n Cray T3E showed the best performance
n Lazy processors on Origin 2000
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Scalability ResultsScalability ResultsScalability Results
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Cray T3E Cost AnalysisCray T3E Cost AnalysisCray T3E Cost Analysis
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Origin 2000 PerformanceOrigin 2000 PerformanceOrigin 2000 Performance

Processors
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Coupled Solid Rocket SimulationsCoupled Solid Rocket SimulationsCoupled Solid Rocket Simulations
n ROCSOLID

l unstructured finite elements
l implicit time integrator
l multigrid equation solver

n ROCFLO
l unsteady 3D, compressible Navier-Stokes

equations on dynamic meshes
l structured finite volumes
l explicit time integrator

n Combustion model
l apn used as interface regression rate

n Interface conditions
l specify b.c.’s for each module



22

Center for Simulation of Advanced Rockets

University of Illinois at Urbana-Champaign

Cray T3E Scalability ResultsCray T3E Scalability ResultsCray T3E Scalability Results
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Origin 2000 Scalability ResultsOrigin 2000 Scalability ResultsOrigin 2000 Scalability Results
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GEN1 T3E Time RequirementsGEN1 T3E Time RequirementsGEN1 T3E Time Requirements
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Adaptive Meshing and MultigridAdaptive Meshing and Adaptive Meshing and MultigridMultigrid
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AMR-MG ConvergenceAMR-MG ConvergenceAMR-MG Convergence
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AMR-MG Parallel Speed-UpAMR-MG Parallel Speed-UpAMR-MG Parallel Speed-Up
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AMR-MG MeshesAMR-MG MeshesAMR-MG Meshes
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Future PlansFuture PlansFuture Plans
n Shells using enhanced assumed strain

solid elements
n Advanced material models
n Scalable nonsymmetric solvers for ALE
n Parallel contact algorithms
n Adaptive mesh refinement and shared

memory parallelism
n Integration into Charm++ environment for

AMR-MG in a distributed memory
environment
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